Infusing Statistical Engineering Peter A. Parker, Ph.D., P.E. National Aeronautics and Space Administration Langley Research Center Engineering Directorate Aeronautics Systems Engineering Branch May 4, 2011 NASA Statistical Engineering Symposium Williamsburg, Virginia ## Statistical Engineering at NASA - Engineering discipline to efficiently gain knowledge through strategic resource investment - Applies systems thinking to high-level, well-defined objectives - Synergistic combination of existing tools to solve complex problems Parker (2008), "Infusing Statistical Engineering in Programs and Projects," NASA LaRC White Paper Figure: Hoerl, R.W. and Snee, R.D. (2010) "Closing the Gap," Quality Progress ## Defining Rocket Motor Requirements Leveraging heritage design for a new application and requirements ### **Original Question** - How to measure roll torque during a firing to size the reaction control system? - Impacts requirements, cost (lifecycle), schedule, volume, mass (payload) ### **Statistical Engineering Applied** - System level studied apparatus, available theory and data - Integrated design of experiments with force measurement expertise - Measured roll torque, quantified uncertainty, reduced design risk - Internally generated ballistics could not be rigorously isolated - Modifications to the firing duty cycle fully achieved objectives - Embedded in processes, software, and training ## Motivation for Statistical Engineering - Consistent methodological framework for research and development - teachable, repeatable, scalable not idiosyncratic - Benefits of successful implementation - Improved Decision-making risk-informed and defendable - Technical excellence unequivocally define objectives, integrity of results/knowledge obtained - Organizational excellence strategically applying resources - Opportunity for statisticians to make greater contributions in achieving strategic organizational objectives ## Changing the Role of the Statistician ## Starts with Fundamental Questions - Heilmeier used as a preflight checklist for successfully launching a research project to curb and clarify both the enthusiasm of the researchers and to evaluate the resource demands of the project managers - What are the precise objectives? - What are we seeking to learn? - Are the objectives quantifiable, detectable, measurable? - What is the impact if you are successful? - How well do we need to know the answers? - How much risk are we willing to accept in being wrong? - What are the consequences if we are wrong? - Do the methods rigorously link to the stated objectives and risk? - Are the resources justifiable and defendable? Questions apply recursively in the vertical direction down to systems and subsystems and horizontally throughout project life-cycle # Using NASA Satellite Data and Models for Socioeconomic Benefits Research into using ozone satellite measurements (Tropospheric Ozone Residual) to improve soybean crop yield ### **Original Question** Can we develop a correlation between satellite measurements and ground-based measurements of ozone? ### **Statistical Engineering Applied** - Synthesized multidisciplinary team member ideas on the objectives to clearly define the research questions and approach - Satellite and ground provide different types of useful information - Modeled yield as a function of temperature, soil moisture, and ozone (satellite and ground) - Impact: Provided new framework, impetus for additional research ## Vital Implementation Elements #### Leadership - Requires leadership to convert a "good idea" into "the new way we do business" - Articulate motivation, communicate expectations, be accountable - Core Competency - Discipline experts matrixed across programs/projects - Multidisciplinary skills are required - Teaming and communication skills are critical - Equipping People with Knowledge and Tools - Broaden awareness of this discipline - Consult with researchers and lead engineers, equip practitioners - To be seen as value-added and measure effectiveness ## Our Progress at NASA Langley - Building a statistical engineering capability takes a deliberate strategy - Obtained leadership support through demonstrated benefits - Growing a core team with multi-disciplinary competence - Broadened knowledge of the discipline by recognized project impact ### Areas we need to improve - Inextricably link statistical engineering to organizational objectives - Assist leadership to further engage and commit with specific actions ## Our Vision for Statistical Engineering - Tactical Discipline that - Drives critical, statistical thinking at the strategic level - Guides statistical methods and research at the operational level - Improves our effectiveness in accomplishing our mission - Defines the right questions - Guides strategic resource investment - Accelerates research and development - Not a replacement for good science and engineering - To promote best practices within our Agency and profession